Comparative analyses of implementation of connected sensors on heart rate variability in middle school judo athletes versus non-athletes
Main Article Content
Abstract
Purpose: This study aimed to examine the differences in heart rate variability (HRV) between athlete and non-athlete students in middle school using unimplemented sensor heart rate. Materials and Methods: Sixty-seven judo athlete and non-judo-athlete students were recruited to the study from middle school were divided into experimental groups (n = 39, height 162.4 ± 7.6 cm, weight 52.7 ± 6.3 kg, Age 12.8 ± 1.3 years), and Control group student (n = 37, height 159.1 ± 6.9 cm, weight 53.2 ± 7.3 kg, age 13.2 ± 0.8 years),The CG students did not take part in any competitive sport at any level, Measure mean heart rate (Mean HR), mean R-R, standard deviation of all normal R-R intervals; (SDNN) and relative, root of the mean squared differences of successive RR intervals (RMSSD),low-frequency (LF), high-frequency (HF) and low-frequency ratio (LF/HF) indicators were used. The T-tests was used to compare sports teams with general differences between athlete and non-judo-athlete students. The significance level was set at p < .05. Results: HRV analysis software analyses the (RR) interval time domain components and the results were given as standard deviation of RR intervals (SDNN), square root of the mean of the sum of the squares of differences between adjacent RR intervals (RMSSD), adjacent RR interval differing more than 50ms (NN50), The Mean (iRR) of the EG is significantly higher than that of the average CG (t = 2.245, p < .05); in terms of Mean HR, the EG are significantly lower than the average CG (t = -2.149, p < .05). Conclusion: Judo training and combat field exercises utilising connected sensors are effective for middle-aged individuals, helping to maintain and reduce resting heart rate while enhancing cardiopulmonary function.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Adel, B., Abdelkader, B., Alia, C., Othman, B., Mohamed, S., & Houcin, A. (2019). The Effect of High-Intensity Exercise on Changes of Blood Concentration Components in Algerian National Judo Athletes. Acta Facultatis Educationis Physicae Universitatis Comenianae, 59(2). https://doi.org/10.2478/afepuc-2019-0013
Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. Sports medicine, 33(12), 889‑919. https://doi.org/10.2165/00007256-200333120-00003
Bansal, D., Khan, M., & Salhan, A. K. (2009). A review of measurement and analysis of heart rate variability. 2009 International Conference on Computer and Automation Engineering, 243‑246. IEEE. https://doi.org/10.1109/ICCAE.2009.70
Beboucha, W., Belkadi, A., Benchehida, A., & Bengoua, A. (2021). The anthropometric and physiological characteristics of young algerian soccer players. Acta Facultatis Educationis Physicae Universitatis Comenianae, 61(1). https://doi.org/10.2478/afepuc-2021-0004
Belkadi, A., Alia, C., & Mohammed, Z. (2020). Algerian Judo Competition Modality and its Impacts on Upper and Lower Limbs Strength Perseverance and Limitations. Orthopedics and Sports Medicine: Open Access Journal, 3(4), 293‑299. https://doi.org/10.32474/OSMOAJ.2020.03.000168
Belkadi, A., Beboucha, W., Benhammou, S., Moussa, M., Bouzoualegh, M., & Dairi, A. (2025). Effects of concurrent in-season training on physiological functions required for top handball performance athletes. Scientific Journal of Sport and Performance, 4(1), 40‑54. https://doi.org/10.55860/JIXW8099
Belkadi, A., Othman, B., Mohamed, S., M, B. H., Gleyse, J., Adel, B., … Gleyse, J. (2015). Contribution to the Identification of the Professional Skills Profile of Coaches in the Algerian Sport Judo System. International Journal of Sports Science, 5(4), 145‑150.
Benchehida, A., Belkadi, A., Zenati, Y., Benbernou, O., Cherara, L., & Sebbane, M. (2021). Implementation of An Adapted Physical Activity Therapy Protocol for Patients with Low Back Pain. Gymnasium, 22(1), 83‑96. https://doi.org/10.29081/gsjesh.2021.22.1.06
Benhammou, S., Mourot, L., Clemente, F. M., Coquart, J., & Belkadi, A. (2024). Is test specificity the issue in assessing aerobic fitness and performance of runners? A systematic review. The Journal of Sports Medicine and Physical Fitness, 64(6), 539‑549. https://doi.org/10.23736/S0022-4707.23.15619-2
Benhammou, S., Mourot, L., Coquart, J., Belkadi, A., Mokkedes, M. I., & Bengoua, A. (2022). The 180/20 intermittent athletic test : A new intermittent track test to assess the maximal aerobic speed in middle-distance runners. Revista andaluza de medicina del deporte, 15(1), 6‑11. https://doi.org/10.33155/j.ramd.2021.08.001
Borresen, J., & Lambert, M. I. (2008). Autonomic control of heart rate during and after exercise. Sports medicine, 38(8), 633‑646. https://doi.org/10.2165/00007256-200838080-00002
Boudehri, M. E. amine, Belkadi, A., Dahoune, O., & Atallah, A. (2023). The effects of circuit exercise training strategy on health-related physical fitness level and biomarkers in elderly people with cardiovascular diseases. Quality in Sport, 11(1), 16‑31. https://doi.org/10.12775/QS.2023.11.01.002
Buchheit, M., Simon, C., Piquard, F., Ehrhart, J., & Brandenberger, G. (2004). Effects of increased training load on vagal-related indexes of heart rate variability : A novel sleep approach. American Journal of Physiology-Heart and Circulatory Physiology, 287(6), H2813‑H2818. https://doi.org/10.1152/ajpheart.00490.2004
Cannon, C. P., Battler, A., Brindis, R. G., Cox, J. L., Ellis, S. G., Every, N. R., … Simoons, M. L. (2001). American College of Cardiology key data elements and definitions for measuring the clinical management and outcomes of patients with acute coronary syndromes : A report of the American College of Cardiology . Journal of the American College of Cardiology, 38(7), 2114‑2130.
Cherara, L., Belkadi, A., Mesaliti, L., & Beboucha, W. (2022). Characteristics of Handgrip (Kumi-Kata) Profile of Georgian Elite Judo Athletes. Gymnasium, 23(1), 54‑66. https://doi.org/10.29081/gsjesh.2022.23.1.04
Cornelissen, V. A., Verheyden, B., Aubert, A. E., & Fagard, R. H. (2010). Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability. Journal of human hypertension, 24(3), 175‑182. https://doi.org/10.1038/jhh.2009.51
Del Rosso, S., Nakamura, F. Y., & Boullosa, D. A. (2017). Heart rate recovery after aerobic and anaerobic tests : Is there an influence of anaerobic speed reserve? Journal of Sports Sciences, 35(9), 820‑827. https://doi.org/10.1080/02640414.2016.1166391
Deus, L. A., Sousa, C. V., Rosa, T. S., Souto Filho, J. M., Santos, P. A., Barbosa, L. D., … Simões, H. G. (2019). Heart rate variability in middle-aged sprint and endurance athletes. Physiology & behavior, 205, 39‑43. https://doi.org/10.1016/j.physbeh.2018.10.018
Draghici, A. E., & Taylor, J. A. (2016). The physiological basis and measurement of heart rate variability in humans. Journal of Physiological Anthropology, 35, 22. https://doi.org/10.1186/s40101-016-0113-7
Freeman, J. V., Dewey, F. E., Hadley, D. M., Myers, J., & Froelicher, V. F. (2006). Autonomic nervous system interaction with the cardiovascular system during exercise. Progress in cardiovascular diseases, 48(5), 342‑362. https://doi.org/10.1016/j.pcad.2005.11.003
Fu, Q. I., & Levine, B. D. (2013). Exercise and the autonomic nervous system. Handbook of clinical neurology, 117, 147‑160. https://doi.org/10.1016/B978-0-444-53491-0.00013-4
Gamelin, F.-X., Baquet, G., Berthoin, S., Thevenet, D., Nourry, C., Nottin, S., & Bosquet, L. (2009). Effect of high intensity intermittent training on heart rate variability in prepubescent children. European journal of applied physiology, 105(5), 731‑738. https://doi.org/10.1007/s00421-008-0955-8
Hautala, A. J., Kiviniemi, A. M., & Tulppo, M. P. (2009). Individual responses to aerobic exercise : The role of the autonomic nervous system. Neuroscience & Biobehavioral Reviews, 33(2), 107‑115. https://doi.org/10.1016/j.neubiorev.2008.04.009
Hautala, A. J., Makikallio, T. H., Kiviniemi, A., Laukkanen, R. T., Nissila, S., Huikuri, H. V., & Tulppo, M. P. (2003). Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. American Journal of Physiology-Heart and Circulatory Physiology, 285(4), H1747‑H1752. https://doi.org/10.1152/ajpheart.00202.2003
Hinojosa‐Laborde, C., Chapa, I., Lange, D., & Haywood, J. R. (1999). Gender differences in sympathetic nervous system regulation. Clinical and Experimental Pharmacology and Physiology, 26(2), 122‑126. https://doi.org/10.1046/j.1440-1681.1999.02995.x
Iellamo, F., Volterrani, M., Di Gianfrancesco, A., Fossati, C., & Casasco, M. (2018). The Effect of Exercise Training on Autonomic Cardiovascular Regulation : From Cardiac Patients to Athletes. Current Sports Medicine Reports, 17(12), 473‑479. https://doi.org/10.1249/JSR.0000000000000544
Joyner, M. J., Charkoudian, N., & Wallin, B. G. (2008). A sympathetic view of the sympathetic nervous system and human blood pressure regulation. Experimental physiology, 93(6), 715‑724. https://doi.org/10.1113/expphysiol.2007.039545
Jurca, R., Church, T. S., Morss, G. M., Jordan, A. N., & Earnest, C. P. (2004). Eight weeks of moderate-intensity exercise training increases heart rate variability in sedentary postmenopausal women. American heart journal, 147(5), e8‑e15. https://doi.org/10.1016/j.ahj.2003.10.024
Kraama, L., Yague, P., Kyröläinen, H., Pulkkinen, S., Matinsalo, T. & Linnamo, V. Effects of eight weeks of physical training on physical performance and heart rate variability in children. Biomedical Human Kinetics, 2017, Sciendo, vol. 9 no. 1, pp. 175-180. https://doi.org/10.1515/bhk-2017-0024
Kuss, O., Schumann, B., Kluttig, A., Greiser, K. H., & Haerting, J. (2008). Time domain parameters can be estimated with less statistical error than frequency domain parameters in the analysis of heart rate variability. Journal of electrocardiology, 41(4), 287‑291. https://doi.org/10.1016/j.jelectrocard.2008.02.014
Ladawan, S., Klarod, K., Philippe, M., Menz, V., Versen, I., Gatterer, H., & Burtscher, M. (2017). Effect of Qigong exercise on cognitive function, blood pressure and cardiorespiratory fitness in healthy middle-aged subjects. Complementary Therapies in Medicine, 33, 39‑45. https://doi.org/10.1016/j.ctim.2017.05.005
Lehrer, P. M., & Gevirtz, R. (2014). Heart rate variability biofeedback : How and why does it work? Frontiers in psychology, 5, 756. https://doi.org/10.3389/fpsyg.2014.00756
Levy, W. C., Cerqueira, M. D., Harp, G. D., Johannessen, K.-A., Abrass, I. B., Schwartz, R. S., & Stratton, J. R. (1998). Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. The American journal of cardiology, 82(10), 1236‑1241. https://doi.org/10.1016/S0002-9149(98)00611-0
Makivić, B., Nikić Djordjević, M., & Willis, M. S. (2013). Heart Rate Variability (HRV) as a tool for diagnostic and monitoring performance in sport and physical activities. Journal of Exercise Physiology Online, 16(3).
Manar, B., Adel, B., Lalia, C., & Saddak, B. (2023). Investigating the Impact of Physiological and Neuromuscular Performance in Highly Trained Judo Athletes of Different Weight Categories. Slobozhanskyi Herald of Science and Sport, 27(3), 118‑127. https://doi.org/10.15391/snsv.2023-3.002
Mandigout, S., Melin, A., Fauchier, L., N'Guyen, L. D., Courteix, D., & Obert, P. (2002). Physical training increases heart rate variability in healthy prepubertal children. European journal of clinical investigation, 32(7), 479‑487. https://doi.org/10.1046/j.1365-2362.2002.01017.x
Oliveira, R. S., Barker, A. R., Wilkinson, K. M., Abbott, R. A., & Williams, C. A. (2017). Is cardiac autonomic function associated with cardiorespiratory fitness and physical activity in children and adolescents ? A systematic review of cross-sectional studies. International journal of cardiology, 236, 113‑122. https://doi.org/10.1016/j.ijcard.2017.02.022
Rocchetti, M., Malfatto, G., Lombardi, F., & Zaza, A. (2000). Role of the input/output relation of sinoatrial myocytes in cholinergic modulation of heart rate variability. Journal of cardiovascular electrophysiology, 11(5), 522‑530. https://doi.org/10.1111/j.1540-8167.2000.tb00005.x
Romanchuk, А., & Dolgier, E. (2017). Effects of long-term training experience of aerobic exercises on middle-aged women. Journal of Physical Education and Sport (JPES), 17(2), Art 102, pp. 680-687. https://doi.org/10.7752/jpes.2017.02102
Rongzhou, W. (2011). Heart rate variability analysis of 750 healthy children. Journal of Clinical Pediatrics, 29(7), 642‑644.
Rowe, J. W., & Troen, B. R. (1980). Sympathetic nervous system and aging in man. Endocrine Reviews, 1(2), 167‑179. https://doi.org/10.1210/edrv-1-2-167
Sacknoff, D. M., Gleim, G. W., Stachenfeld, N., & Coplan, N. L. (1994). Effect of athletic training on heart rate variability. American heart journal, 127(5), 1275‑1278. https://doi.org/10.1016/0002-8703(94)90046-9
Saddek, B., Coquart, J. B. J., Mourot, L., Adel, B., Idriss, M. M., Ali, B., & Djamel, M. (2020). Comparison of Two Tests to Determine the Maximal Aerobic Speed. Acta Facultatis Educationis Physicae Universitatis Comenianae, 60(2), 241‑251. https://doi.org/10.2478/afepuc-2020-0020
Sandercock, G. R., Bromley, P. D., & Brodie, D. A. (2005). Effects of exercise on heart rate variability : Inferences from meta-analysis. Medicine and science in sports and exercise, 37(3), 433‑439. https://doi.org/10.1249/01.MSS.0000155388.39002.9D
Scheer, K. S., Siebrant, S. M., Brown, G. A., Shaw, B. S., & Shaw, I. (2014). Wii, Kinect, and Move. Heart rate, oxygen consumption, energy expenditure, and ventilation due to different physically active video game systems in college students. International journal of exercise science, 7(1), 22. https://doi.org/10.70252/XHTR7649
Selig, S. E., Carey, M. F., Menzies, D. G., Patterson, J., Geerling, R. H., Williams, A. D., … Hare, D. L. (2004). Moderate-intensity resistance exercise training in patients with chronic heart failure improves strength, endurance, heart rate variability, and forearm blood flow. Journal of cardiac failure, 10(1), 21‑30. https://doi.org/10.1016/S1071-9164(03)00583-9
Selvaraj, N., Jaryal, A., Santhosh, J., Deepak, K. K., & Anand, S. (2008). Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography. Journal of medical engineering & technology, 32(6), 479‑484. https://doi.org/10.1080/03091900701781317
Senouci, A., Asli, H., Belkadi, A., Bouhella, H., & Koutchouk, S. M. (2024). The Effect of Cold Therapy on Delayed Onset Muscle Soreness and Quadriceps Femoris Strength After High-Intensity Eccentric Training. Gymnasium, 25(2), 34‑50.
Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in public health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
Sharma, V. K., Subramanian, S. K., Arunachalam, V., & Rajendran, R. (2015). Heart Rate Variability in Adolescents - Normative Data Stratified by Sex and Physical Activity. Journal of Clinical and Diagnostic Research : JCDR, 9(10), CC08-CC13. https://doi.org/10.7860/JCDR/2015/15373.6662
Sztajzel, J. (2004). Heart rate variability : A noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss medical weekly, 134(35‑36), 514‑522.
Tang, Y.-Y., Ma, Y., Fan, Y., Feng, H., Wang, J., Feng, S., … Li, J. (2009). Central and autonomic nervous system interaction is altered by short-term meditation. Proceedings of the national Academy of Sciences, 106(22), 8865‑8870. https://doi.org/10.1073/pnas.0904031106
Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance : The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37(2), 141‑153. https://doi.org/10.1007/s12160-009-9101-z
Ueno, L. M., & Moritani, T. (2003). Effects of long-term exercise training on cardiac autonomic nervous activities and baroreflex sensitivity. European journal of applied physiology, 89(2), 109‑114. https://doi.org/10.1007/s00421-002-0777-z
Vanderlei, L. C. M., Silva, R. A., Pastre, C. M., Azevedo, F. M. de, & Godoy, M. F. (2008). Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Brazilian Journal of Medical and Biological Research, 41, 854‑859. https://doi.org/10.1590/S0100-879X2008005000039
Vigo, D. E., Siri, L. N., & Cardinali, D. P. (2019). Heart Rate Variability : A Tool to Explore Autonomic Nervous System Activity in Health and Disease. In P. Á. Gargiulo & H. L. Mesones Arroyo (Éds.), Psychiatry and Neuroscience Update : From Translational Research to a Humanistic Approach-Volume III (p. 113‑126). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-95360-1_10
Wheat, A. L., & Larkin, K. T. (2010). Biofeedback of heart rate variability and related physiology : A critical review. Applied psychophysiology and biofeedback, 35(3), 229‑242. https://doi.org/10.1007/s10484-010-9133-y
Yacine, Z., Othmane, B., Adel, B., Mohamed, S., Aabdelkader, B., & Lalia, C. (2020). Functional movement screening as a predictor of injury in highly trained female's martial arts athletes. Polish Hyperbaric Research, 71(2), 67‑74. https://doi.org/10.2478/phr-2020-0012
Yan, W., Jun, X., & Guo-Rong, G. (2006). An analysis of heart rate variability in patients with coronary heart disease. Medical Journal of Qilu, 01.
Yeh, C.-H., & Kuo, Y.-C. (2012). Wii Sports.
Zhou, X., Zhou, L., Wang, S., Yu, L., Wang, Z., Huang, B., … Jiang, H. (2016). The use of noninvasive vagal nerve stimulation to inhibit sympathetically induced sinus node acceleration : A potential therapeutic approach for inappropriate sinus tachycardia. Journal of cardiovascular electrophysiology, 27(2), 217‑223. https://doi.org/10.1111/jce.12859