

Auxotonic training in muscle strength and power performance of professional young volleyball players

Yeliz Kahraman 🖾 . Movement and Training Laboratory. Health Science Department. Akdeniz University. Antalya, Turkey. Fatih Kilinç. Recreation Department. Isparta Applied Science University. Isparta, Turkey.

ABSTRACT

Auxotonic training unexplained on isotonic and isometric muscular contraction combination to develop strength and power gain. The study aimed to investigate muscle strength and power changes of professional young volleyball players on the auxotonic training effect. Volleyball players divided in AUT (auxotonic group: 16.32 y, 1.72 m, 63.63 kg) trained over 8 week and per week 2 day performing isotonic + isometric contraction combination periodization and IKT (isokinetic group: 16.23 y, 1.69 m, 60.22 kg) performed only isokinetic contraction periodization. The linear muscle strength and power processes of training periodization preferred for maximize performance. The strength changes of this study resulted on AUT and IKT for 1RM strength test and activforce isometric muscular strength adaptation test were similar, however, AUT obtained high improvement power performance (p < .05). Auxotonic training developed on strength and power for AUT. Additionally, showing of comparison between AUT and IKT concluded CMJ (90°) ES = 1.09 very large. vertical jump ES = 1.31 very large and handgrip right ES = 0.05 small effect size. Based on the results we obtained, current auxotonic contraction was determined on resistance training applied to young volleyball players effective in strength and power development. Auxotonic training performed on young volleyball players will bring a perspective to the coaches and athletes work in this field as a resistance training model. The auxotonic training strategy for long term performance changes on outcomes of using aimed potential muscle isotonic + isometric contraction combination may be effective maximize strength and power performance.

Keywords: Technology sport, Innovation sport, Auxotonic training, Strength, Power, Volleyball players.

Cite this article as:

Kahraman, Y., & Kilinç, F. (2025). Auxotonic training in muscle strength and power performance of professional young volleyball players. *Sustainability and Sports Science Journal, 3*(1), 1-14. <u>https://doi.org/10.55860/VARE3591</u>

 Corresponding author. Movement and Training Laboratory. Health Science Department. Akdeniz University. Antalya, Turkey. E-mail: <u>yelizkahramana@hotmail.com</u> Submitted for publication July 22, 2024. Accepted for publication September 25, 2024. Published September 30, 2024. <u>Sustainability and Sports Science Journal</u>. ISSN 2990-2975.
 ©Asociación Española de Análisis del Rendimiento Deportivo. Alicante. Spain. Identifier: <u>https://doi.org/10.55860/VARE3591</u>

INTRODUCTION

Auxotonic resistance is one of training performance condition for upper and lower compartment maximal strength development obtained from muscular strain changes (Azeem et al., 2022). Auxotonic muscular performance of large muscle groups are combinate isotonic and isometric muscle action (Lee et al., 2018). Furthermore, isotonic muscular contraction preferred for push and speed phases of dynamic performance, other isometric muscular contraction to maximum strength and range of motion of static performance (Lee et al., 2018; Lum et al., 2023). In this case, isotonic and isometric actions detected to strength development and muscular force action (Azeem et al., 2022). Over the last study reported that 1RM-70% - 10 rep auxotonic resistance and 10 s isotonic moderate intensity training to leg performance are similar strength and power gain on acute changes (Lina-Samaniego et al., 2022). Periodic long term isotonic and isometric muscular resistance training showed that isotonic action increased in bench press 34.45%, sit-up 24.13% and flexibility 29.12% than isometric action in bench press 14.23%, sit-up 7.80% and flexibility 6.92% (Azeem et al., 2022). In resistance trained men, isotonic and isometric back squat mechanics performed on 1RM-75%, both isometric contraction (2.8%) and isotonic contraction (2.6%) developed vertical jump performance (Vargas-Molina et al., 2021). In this condition, isotonic and isometric combination limited to auxotonic training level in muscular strength and power performance on sport modalities (Lum et al., 2023). Specifically, isometric activation is common preferred for maximum strength in auxotonic training rapid force period (Lee et al., 2018; Lum et al., 2023; Comfort et al., 2022). Rapid strength transition was unexplained for isotonic + isometric contraction relationship on range of motion and speed mechanism (Lum et al., 2023; Comfort et al., 2022). In this case, early and late time-dependent resistance phases are explained on "S = (Newton x) time)" is strength potential represented to late period 5 s and early period 1 s (Guppy et al., 2022). Isometric potential forces based on intensity of muscular contraction and proper muscle-tendon activation to range of motion increases high strength effort (Comfort et al., 2022). Indeed, auxotonic resistance is one of internal and external strength working on strain changes through strength development that isotonic + isometric actions are effective for strength loss and muscular activations (Lee et al., 2018). Different types of muscle contraction are performed on muscle strength and power development, however, auxotonic muscle strength should be known as the performance of shortening and range of motion in combined contractions (Lee et al., 2018). Why it is preferred is an important issue, because isotonic and isometric resistance training does not require special equipment, and performing exercises in very short intervals within certain ranges of motion of joints and muscles does not cause fatigue (Azeem et al., 2022; Lum et al., 2023). In this context, as isotonic and isometric strength changes increase after auxotonic training, it is necessary to conduct further research on the branch-specific use of such resistance training methods. To determine individual isotonic + isometric output used dynamic and static strength (Karagiannopoulos et al., 2022). However, maximal strength and power development strategies of auxotonic training needed for 1RM and vertical jump studies (Azeem et al., 2022). Therefore, this study aimed to auxotonic resistance training investigate on strength and power performance of professional young volleyball players.

METHOD AND MATERIALS

Participants

The study formed professional 26 female young volleyball players; AUT group (n = 13) age 16.32 ± 0.60 y, height 1.72 ± 0.05 m, weight 63.63 ± 7.74 kg isotonic + isometric training performed over 8 week and per week 2 day periodization. IKT group (n = 13) age 16.23 ± 0.59 y, height 1.69 ± 0.04 m, weight 60.22 ± 4.64 kg trained only isotonic muscular action periodization no participated isometric contraction session. Ethic permission acceded by Akdeniz University Clinic Committee Protocol-890/220/2021.

Procedure

1RM (one repetition maximum) test

One repetition maximum test using report of NSCA editors performed on participants. Initially performance condition determined on 10 min standard dynamic and static warm-up. Participants for upper compartment resistance exercises on 90-100% 1RM reach by increasing 4-9+ kg tested, again 1RM test incremental at 50% (5-10 rep), 80% (3-5 rep), 90% and 100% used for each test by smith machine (ProWellness Silver Line, LX serial, TR) and free-weight and dumbbell (Diesel series). Auxotonic resistance training exercises performed on a) wrist dorsal flexion using 5 kg dumbbell, b) wrist extension using 5 kg dumbbell, c) wrist abduction using 5 kg dumbbell, d) wrist adduction using 5 kg dumbbell, e) trunk lateral flexion using 5 kg dumbbell by 2.5 kg increase, f) upper rowing using upper row machine with increasing 3-4 kg, g) triceps press down using triceps push down machine by 5 kg increase, h) hip flexion using cable rowing by opposite U smith machine, i) hip extension using cable rowing on opposite U machine, j) ankle dorsal flexion using smith machine with increasing 7 kg, k) ankle plantar flexion using cable row machine by 5 kg increase. I) ankle inversion using cable row machine with increasing 3-4 kg, m) ankle eversion using cable row machine by 3-4 kg increase, n) biceps curl using seated barbell machine with increasing 2.5-5 kg, o) shoulder pull down using shoulder machine by 3-4 kg increase, p) chest press using chest machine with increasing 5 kg, r) hip abduction using cable row machine by 5 kg increase, s) hip adduction using cable row machine with increasing 5 kg, t) leg curl using leg curl machine by 5 kg increase, u) leg extension using leg extension machine with increasing 5 kg, v) abdominal hyperextension using free-weight on sit-up machine by 5-10 kg increase, w) trunk flexion using weight with increasing 5-10 kg, x) trunk extension using weight by 5-10 kg increase, v) trunk rotation using weight with increasing 5-10 kg. Proper stabile protocol showed on each measurement and supporting image and verbal.

Activforce isometric muscle activation

Rapid strength potential isometric force-time curve performance performed on peak and average force. Totally isometric strength test performed on individual 20 min performance. To muscle activation evaluate *"Activforce 2 hand dynamometer"* (Activforce 2, Australia) used for reliable measurement (ICC = 0.85-0.99) (Karagiannoupolos et al., 2022). Upper and lower compartment extremity measurements analysed total 24 movement related nearest joint proximal performing sit-up, sitting, prone position.

References joint range of motion points determined on a) shoulder flexion on arm epicondyle proximal, b) shoulder extension on arm epicondyle proximal, c) shoulder abduction on arm epicondyle proximal, d) shoulder adduction on arm epicondyle proximal, e) shoulder lateral-internal rotation on styloid process proximal, f) shoulder medial-external rotation on styloid process proximal, g) elbow flexion on proximal styloid process, h) elbow extension on proximal styloid process, i) elbow supination on lateral styloid process, k) wrist flexion on metacarpophalangeal joint proximal, n) wrist adduction on metacarpophalangeal joint proximal, m) wrist adduction on metacarpophalangeal joint proximal, m) wrist adduction on femoral epicondyle nearest, p) hip extension on femoral epicondyle nearest, r) hip abduction on lateral epicondyle nearest, s) hip adduction on lateral epicondyle nearest, t) knee flexion on malleoli proximal, u) knee extension on metacarpophalangeal joint proximal, w) ankle plantar flexion on metacarpophalangeal joint proximal, w) ankle eversion on lateral malleoli proximal, c) ankle inversion on lateral malleoli proximal, y) ankle eversion on lateral malleoli proximal, how and the set of the s

Vertical jumps

Countermovement jump (CMJ) as highest jump concentric explosive vertical jump at 180 degree knee flexed, non-arm swing countermovement jump (aCMJ) as highest jump as knee flexed and arm on hip, vertical jump

(VJ) in specific technique, single leg vertical jump (SLVJ) performed on right or left leg at 180 degree knee flexed as countermovement jump. Each participant tested on 3 jump session permissions 10 s recovery (Inf, SW03, Photocell Vertical Jump Device, TR) (Kahraman, 2023).

Calisthenics

Sit-up started knee locked position and hand in ground, their chest nearest ground then elbow flexion lifting proper movement phase performed controlled during 30 second (Clemons, 2019). Push-up tested on ground position by knee locked, shoulder optimal range of motion, hand in ground then longitudinal body lowered in chest controlled way. Triceps dips on parallel bench, feet in ground and arms 90 degree flexed then performed extension position (Delavier, 2001).

Flexibility

Trunk and hamstring flexibility tested on box bench to evaluate knee and feet flatted with hand palm extended during box as maximum flexion possible by protecting 5 s proper position (Muyor et al., 2014).

Agility and speed

Test started initially on 10 m distance pointed then agility and speed maximal performance as possible highest speed about runner exactly 42 m, by covering the distance, the vertical jump performed through a step to the side reached, first to the right and returned to the start point, then non-stop by covering the same distance and taking a step to the left performed vertical jump (Chronometer, Kalenji).

Handgrip

Strength of right and left hand tested one handgrip device as possible maximum force reaction with 5 s contraction position.

Auxotonic resistance training

Auxotonic resistance training included in isotonic + isometric combination exercises; 1) Push-up, 2) Squat, 3) Triceps dips, 4) Calf raise, 5) Abdominal crunch, 6) Superman plank performed on the over 8 week and per week 2 day at 1 hour. Auxotonic training intensities respectively, first and second week at 50% low intensity, 3x8 rep, isom contraction 5 s, 15 s recovery, rop 30x4 rep, third and four week at 60% moderate intensity, 3x10 rep, isom contraction 7 s, 15 s recovery, rop 30x5 rep, five week at 70% moderate intensity, 3x12 rep, isom contraction 8 s, 30 s recovery, six week at 75% moderate-high intensity, 3x12 rep, isom contraction 8 s, 30 s recovery, six week at 75% moderate-high intensity, 3x12 rep, isom contraction 10 s, 30 s recovery, and eight week at 90% high intensity, 4x12 rep, isom contraction 10 s, 30 s recovery. Whereas isotonic training was formed on isotonic contraction without isom seconds.

Statistical analysis

Population sample size using G. Power to determine statistical analysis. Two variable evaluations to detected d = 0.67 effect size used one Paired-T test after normality test to comparison. 1RM test, activforce strength test and power test comparison calculated on T-test. In this way, significant priority collocated alpha level (p < .05). Effect size using confidence interval of descriptors obtained from <0.25 = large, 0.25-0.50 medium, 0.50-1.00 = large, >1.00 = very large (Rhea, 2004).

RESULTS

Primarily 1RM strength, activforce isometric strength, power test comparison outcomes provided on effect sizes for strength and power development. AUT and IKT compared to 1RM strength in result of long term

linear periodization. Strength changes increase to AUT than IKT showed pre and post-test outcomes. AUT to post test showed mostly high development (Table 1, 2).

1 TM TEST	Group	Pre – Post	t	р	ES
Wrist extension (kg)	AUT	10.57±2.08 – 12.50±2.50	-2.540	.026	0.83
Wrist abduction (kg)	IKT	11.34±2.99 – 12.30±3.30	-1.100	.293	trival
Whist abduction (kg)	AUT	5.03±0.92 – 7.11±0.93	-8.035	.000	2.24
Wrist adduction (kg)	IKT	5.19±0.69 - 5.00±0.00	1.000	.337	trival
Whist adduction (kg)	AUT	4.84±0.55 – 6.34±1.29	-4.356	.001	1.51
Trunk lateral floxion (kg)	IKT	6.00±1.54 – 5.80±1.49	1.000	.337	trival
TTUTIK lateral liexion (kg)	AUT	21.15±1.65 – 24.23±1.57	-6.121	.000	1.91
Lippor rowing (kg)	IKT	22.03±2.38 – 23.26±1.20	-1.705	.114	trival
	AUT	36.69±6.40 - 38.42±4.19	-1.021	.327	trival
	IKT	39.69±7.07 - 37.53±4.77	1.255	.233	trival
Tricons pross down (kg)	AUT	28.30±7.21 – 43.03±8.98	-5.713	.000	1.80
Theeps press down (kg)	IKT	25.30±5.54 – 30.53±5.66	-4.305	.001	0.93
Hip flexion (kg)	AUT	18.53±4.40 – 35.19±12.43	-4.963	.000	1.78
The nexton (kg)	IKT	18.07±3.83 – 41.53±15.46	-6.151	.000	2.08
Hin extension (kg)	AUT	18.46±6.99 – 31.53±7.74	-4.155	.001	1.77
The extension (kg)	IKT	21.15±6.50 – 25.38±4.31	-1.877	.085	trival
Aplela darai flavian (ka)	AUT	15.03±6.33 – 19.23±5.21	-3.410	.005	0.72
Ankie dorsi nexion (kg)	IKT	17.15±5.28 – 12.92±3.52	2.724	.018	-0.94
Apple planter florion (kg)	AUT	17.53±4.78 – 22.30±4.38	-2.592	.024	1.04
Ankie plantar liexion (kg)	IKT	15.38±4.31 – 15.76±4.93	-0.365	.721	trival
Ankle inversion (kg)	AUT	23.07±6.30 - 31.30±5.05	-5.508	.000	1.44
	IKT	19.61±5.18 – 23.46±9.65	-1.443	.175	trival
Ankie eversion (kg)	AUT	27.50±7.90 - 31.92±7.22	-2.945	.012	0.58
	IKT	24.23±5.71 – 25.38±9.00	-0.454	.658	trival
Biceps curl (kg)	AUT	16.34±2.19 - 19.42±2.53	-4.382	.001	1.30
	IKT	14.80±2.38 – 16.15±3.90	-2.214	.047	0.41
Shoulder pull down (kg)	AUT	33.46±5.54 - 32.50±5.95	0.483	.638	trival
1 (3)	IKT	31.53±5.54 – 29.23±4.93	1.389	.190	trival
Chest press (kg)	AUT	30.00±7.35 – 35.80±4.53	-2.768	.017	0.95
	IKT	$33.19 \pm 10.82 - 33.57 \pm 9.01$	-0.136	.894	trival
Hip abduction (kg)	AUT	$47.57 \pm 8.34 - 52.84 \pm 9.90$	-2.356	.036	0.57
	IKT	45.42+5.87 - 49.65+8.10	-2,157	.052	trival
Hip adduction (kg)	AUT	$47.23\pm8.72-58.42\pm9.02$	-3.964	.002	1.26
	IKT	39.73+8.60 - 50.76+4.73	-4,285	.001	1.61
Leg curl (kg)	AUT	31.92 + 9.25 - 40.00 + 5.40	-3.228	.007	1.06
	IKT	39 23+12 22 - 38 19+6 25	0.257	801	trival
Leg extension (kg)	AUT	60.76+17.05 -72.30+10.12	-2.024	.066	trival
	IKT	37 30+19 43 - 62 30+19 32	-3 536	004	1 29
Calf raise (kg)	AUT	40.76+9.54 - 47.11+6.75	-3 434	005	0.76
	IKT	34 46+11 01 - 34 23+10 37	0.069	946	trival
Abdominal hyperextension (kg)	AUT	$16\ 07+4\ 35-21\ 30+4\ 97$	-4 500	001	1 11
	ікт	18 07+5 60 - 18 84+5 82	-0.365	721	trival
Trunk flexion (kg)		26 73+7 63 - 31 53+9 65	-2 900	013	0.55
		20.70±7.00 01.00±0.00	_1 000	337	trival
Trunk extension (kg)		24.2014.00 - 20.1010.09	_0 505	563	trival
		$20.01 \pm 1.07 = 23.00 \pm 1.01$ $28.81 \pm 6.17 22.60 \pm 6.32$	2 / 2/	020	trival
Trunk rotation (kg)		20.04±0.17 = 22.03±0.02 16 73+1 19 = 91 73+5 31	-5 326	.029	1 01
Trunk rotation (kg)		$16.75 \pm 9.75 = 21.75 \pm 5.54$ $16.15 \pm 6.81 = 14.61 \pm 3.70$	0.772	.000	trival
			0.114		

Table 1. 1RM strength outcomes comparison of AUT and IKT to pre and post-test.

			1 .	1	
1 RM TEST	Group	Test	t	р	ES
Wrist dorsal flexion (kg)	AUT	20.76 ± 4.00	0.457	.652	trivial
	IKI	20.00 ± 4.56			liviai
Wrist plantar flexion (kg)	AUT	12.50 ± 2.50	0.167	.868	trivial
	IKI	12.30 ± 3.30			uiviai
Wrist abduction (kg)	AUT	7.11 ± 0.93	8,124	.000	3 20
	IKI	5.00 ± 0.00	-		5.20
Wrist adduction (kg)	AUT	6.34 ± 1.29	0.981	.336	trivial
	IKI	5.80 ± 1.49			uiviai
Trunk lateral flexion (kg)	AUT	24.23 ± 1.57	1.750	.093	trivial
	IKI	23.26 ± 1.20			uiviai
Upper rowing (kg)	AUT	38.42 ± 4.19	0.502	.620	trivial
	IKI	37.53 ± 4.77			liviai
Triceps press down (kg)	AUT	43.03 ± 8.98	4.244	.000	1.66
	IKI	30.53 ± 5.66			1.00
Hip flexion (kg)	AUT	35.19 ± 12.43	1,153	.260	trivial
	IKI	41.53 ± 15.46			livia
Hip extension (kg)	AUT	31.53 ± 7.74	2 504	019	0.00
	IKT	25.38 ± 4.3	2.001	.010	0.90
Ankle dorsi flexion (ka)	AUT	19.23 ± 5.21	3 614	001	4 44
	IKT	12.92 ± 3.52	0.011	.001	1.41
Ankle plantar flexion (kg)	AUT	22.30 ± 4.38	3 571	002	4.40
	IKT	15.76 ± 4.93	0.071	.002	1.40
Ankle inversion (kg)	AUT	31.30 ± 5.05	2 595	016	1.01
	IKT	23.46 ± 9.65	2.555	.010	1.01
Ankle evereign (kg)	AUT	31.92 ± 7.22	2 042	052	
Alikie eversion (kg)	IKT	25.38 ± 9.00	2.042	.052	trivial
Bicens curl (kg)	AUT	19.42 ± 2.53	2 534	018	
Diceps cuil (kg)	IKT	16.15 ± 3.90	2.334	.010	0.99
Shoulder pull down (kg)	AUT	32.50 ± 5.95	1 525	140	
	IKT	29.23 ± 4.93	1.525	. 140	trivial
Chast proce (kg)	AUT	35.80 ± 4.53	0 707	422	
Chest press (kg)	IKT	33.57 ± 9.01	0.797	.433	trivial
Hin abduction (kg)	AUT	52.84 ± 9.90	0.900	277	
	IKT	49.65 ± 8.10	0.099	.377	trivial
Hip adduction (kg)	AUT	58.42 ± 9.02	2 707	012	
	IKT	50.76 ± 4.73	2.707	.012	1.06
	AUT	40.00 ± 5.40	0.790	420	
Leg cull (kg)	IKT	38.19 ± 6.25	0.769	.430	trivial
Lon extension (len)	AUT	72.30 ± 10.12	4.050	444	ا مان باندا
Leg extension (kg)	IKT	62.30 ± 19.32	1.653	.111	triviai
	AUT	47.11 ± 6.75	2 574	001	
Call raise (kg)	IKT	34.23 ± 10.37	3.571	.001	1.47
	AUT	21.30 ± 4.97	4.450	050	1
Abdominal hyperextension (kg)	IKT	18.84 ± 5.82	1.158	.258	trivial
T (a)	AUT	31.53 ± 9.65	4.404	140	
I runk flexion (kg)	IKT	26.15 ± 8.69	1.494	.148	trivial
To all a locate (III)	AUT	29.03 ± 7.87	0.005	000	1
I runk extension (kg)	IKT	22.69 ± 6.32	2.265	.033	0.88
To all sate (second a)	AUT	21.73 ± 5.34	0.045	004	1
I runk rotation (kg)	IKT	14.61 ± 3.79	3.915	.001	1.53

Table 2. 1RM strength outcomes comparison of AUT and IKT to post test.

Activforce isometric strength outcomes provided effect size of AUT and IKT to result muscular isom potential activation. AUT and IKT compared to activforce measurement showed on peak and average force changes increase to AUT and IKT similar to pre and post-test outcomes. AUT and IKT post-test comparison concluded non effect sizes (Tables 3,4).

Isom force		Pre – Post	t	р	ES
Shoulder flevion (N)	Peak	111.95 ± 18.11 129.05 ± 14.54	-3.316	.006	1.04
	Avg	94.99 ± 12.60 108.14 ± 13.29	-3.416	.005	1.01
Shoulder extension (N)	Peak	103.33 ± 25.66 142.57 ± 31.00	-4.850	.000	1.37
	Avg	87.83 ± 21.64 113.10 ± 22.84	-3.261	.007	1.13
Shoulder abduction (N)	Peak	123.00 ± 25.68 135.17 ± 23.96	-2.000	.069	trivial
	Avg	100.02 ± 22.23 113.18 ± 24.84	2.206	.048	0.55
Shoulder adduction (N)	Peak	100.21 ± 21.65 138.89 ± 23.10	-4.633	.001	1.72
	Avg	77.55 ± 18.30 116.07 ± 20.18	-7.134	.000	1.99
Shoulder lateral/internal rotation (N)	Peak	117.28 ± 37.56 157.15 ± 26.59	-4.202	.001	1.22
	Avg	88.59 ± 23.36 131.51 ± 30.12	-5.249	.000	1.59
Shouldor modial/axternal rotation (NI)	Peak	97.31 ± 20.49 123.27 ± 20.4	-3.209	.008	1.26
Shoulder medial/external rotation (N)	Avg	80.83 ± 18.54 104.54 ± 16.91	-3.150	.008	1.33
Elbow flovion (NI)	Peak	128.50 ± 24.77 158.76 ± 43.00	-3.168	.008	0.86
	Avg	107.27 ± 16.56 128.83 ± 36.16	-2.664	.021	0.76
Elhow extension (N)	Peak	124.99 ± 33.27 170.36 ± 30.54	-4.264	.001	1.42
	Avg	100.60 ± 27.37 141.80 ± 28.69	-4.320	.001	1.46
	Peak	87.86 ± 21.05 123.89 ± 42.40	-2.932	.013	1.07
	Avg	92.31 ± 31.21 104.44 ± 40.40	-2.875	.014	0.33
	Peak	116.75 ± 45.63 121.64 ± 41.78	-0.433	.673	trivial
Elbow pronation (N)	Avg	74.77 ± 15.31 104.53 ± 36.20	-1.331	.208	1.07
Mint flowing (N)	Peak	88.91 ± 26.05 102.49 ± 29.88	-2.143	.053	trivial
	Avg	77.30 ± 24.02 90.78 ± 29.13	-2.199	.048	0.50
Wrist extension (N)	Peak	71.13 ± 18.49 80.41 ± 13.90	-1.945	.076	trivial
	Avg	58.87 ± 14.25 65.50 ± 12.40	-1.791	.099	trivial

Table 3	Activforco	icomotrio	strongth con	naricon c	f ALIT to	nro and i	noct no	ak and a	vorago forco
I able J.	ACTINIOLOG	12011101110	Suchyur cor	iipanson c		pie anu j	υυδι με	zan anu a	weraye luice.

VOLUME 3 | ISSUE 1 | 2025 | 7

	Deals	70.83 ± 19.19	4.055	000	4 50
Minist adduction (NI)	Реак	104.47 ± 22.85	-4.955	.000	1.59
whist adduction (N)	A	58.41 ± 15.58	4.000	004	4 50
	Avg	88.55 ± 21.70	-4.000	.001	1.59
	Deal	93.23 ± 23.20	4.070	077	(2.2.)
	Реак	103.48 ± 19.47	-1.273	.211	triviai
vvrist abduction (N)	A	82.72 ± 18.83	4 4 2 0	004	12.2.1
	Avg	91.73 ± 21.51	-1.130	.281	triviai
	Deal	159.59 ± 28.87	4 760	000	1.04
Hip flovion (N)	Реак	198.17 ± 33.01	-4.702	.000	1.24
	Δυσ	134.04 ± 20.24	5 756	000	1 47
	Avy	166.14 ± 23.25	-5.750	.000	1.47
	Poak	154.71 ± 73.28	4 041	002	1 27
Hip extension (N)	I Cak	239.53 ± 59.13	-4.041	.002	1.21
	Δνα	122.43 ± 42.66	-3 489	004	1 34
	Avg	187.69 ± 53.91	-0.400	.004	1.04
	Peak	126.63 ± 42.75	-4 269	001	0.97
Hip abduction (N)	1 Out	167.04 ± 40.38	4.200	.001	0.07
	Ava	109.38 ± 41.14	-3 204	008	0.65
	,g	134.64 ± 36.00	0.201		0.00
Hip adduction (N)	Peak	119.73 ± 19.59	-4.951	.000	1.56
		169.02 ± 39.87			
	Avg	100.31 ± 16.22	-3.438	.005	1.05
		131.40 ± 38.58			
	Peak	130.57 ± 37.95	-3.456	.005	1.34
Knee flexion (N)		195.91 ± 49.55			
	Avg	114.40 ± 30.29	-2.640	.022	1.17
		107.04 ± 41.03 100.42 + 55.57			
	Peak	100.43 ± 33.37 175.74 ± 42.40	0.340	.740	trivial
Knee extension (N)		$1/3.74 \pm 42.40$ $1/8.80 \pm 50.96$			
	Avg	143.84 + 39.25	0.341	.739	trivial
		96 45 + 32 87			
	Peak	124 67 + 25 94	-3.969	.002	0.95
Ankle dorsi flexion (N)		75.74 ± 20.51			
	Avg	110.21 ± 27.38	-5.535	.000	1.42
	_ .	75.87 + 10.80			0.54
	Peak	121.57 ± 23.00	-5.668	.000	2.54
Ankle plantar flexion (N)	A	57.62 ± 9.52	0.007	000	0.74
	Avg	104.102 ± 21.97	-0.607	.000	2.74
Ankle inversion (N)	Deals	83.67 ± 17.10	0.550	005	1.04
	геак	101.70 ± 17.39	-2.000	.025	1.04
	Ava	70.35 ± 14.90	1 005	060	trivial
	Avg	82.10 ± 17.57	-1.990	.009	unviai
	Peak	83.78 ± 26.85	-2 000	060	trivial
Ankle eversion (N)	I Cak	95.56 ± 17.94	-2.000	.009	uiviai
	Ανα	70.81 ± 25.69	-0 844	415	trivial
	, wg	75.76 ± 12.46	0.077		arviar

Table 4. Activforce isometric strength comparison of IKT to pre and post peak and average force.

Isom force		Pre – Post	t	р	ES
Shoulder floxion (N)	Peak	95.15 ± 24.53 129.13 ± 21.45	-3.649	.003	1.47
	Avg	71.44 ± 16.96 104.87 ± 15.87	-5.738	.000	2.05

	Peak	93.38 ± 18.12	-5.310	.000	1.82
Shoulder extension (N)	Avg	78.69 ± 15.48 110 97 + 18 77	-5.843	.000	1.87
-	Peak	96.74 ± 19.98 133.95 + 21.14	-5.560	.000	1.80
Shoulder abduction (N)	Avg	83.78 ± 21.42 109.71 ± 19.87	-3.577	.004	1.25
Chaulder adduction (N)	Peak	83.46 ± 21.46 136.14 ± 18.82	-7.886	.000	2.61
	Avg	69.33 ± 18.52 109.49 ± 11.80	-7.952	.000	2.58
Shoulder lateral/internal rotation (N)	Peak	92.58 ± 32.36 148.38 ± 38.74	-4.882	.000	1.56
	Avg	75.85 ± 28.27 117.16 ± 32.09	-3.600	004	1.36
Omuz medial/external rotation (N)	Peak	78.41 ± 17.94 121.09 ± 22.96	-5.958	0.000	2.07
	Avg	66.08 ± 15.44 97.43 ± 12.87	-6.346	.000	2.20
Elbow flexion (N)	Peak	132.69 ± 42.27 139.38 ± 38.26	-0.596	.562	trivial
	Avg	101.71 ± 34.80 113.37 ± 25.61	-1.119	.285	0.38
Elbow extension (N)	Peak	102.56 ± 32.06 162.86 ± 30.38	-5.177	.000	1.93
	Avg	84.37 ± 26.97 131.41 ± 22.56	-4.253	.001	1.89
Elbow subjection (N)	Peak	84.21 ± 24.40 137.53 ± 30.76	-5.310	.000	1.92
	Avg	66.93 ± 16.99 116.38 ± 24.02	-5.458	.000	2.37
Elbow proportion (N)	Peak	105.30 ± 26.65 125.50 ± 23.83	-2.145	.053	trivial
	Avg	84.52 ± 21.24 106.90 ± 18.60	-2.924	.013	1.12
Wrist flexion (N)	Peak	85.45 ± 18.50 110.89 ± 17.61	-4.167	.001	1.40
	Avg	71.01 ± 17.71 95.20 ± 15.90	-4.206	.001	1.43
Wrist extension (N)	Peak	85.28 ± 18.17 85.07 ± 24.52	0.025	.980	trivial
	Avg	69.28 ± 15.54 70.67 ± 20.16	-0.173	.865	trivial
Wrist adduction (N)	Peak	67.21 ± 19.43 99.95 ± 14.41	-4.613	.001	1.91
	Avg	56.30 ± 16.87 80.28 ± 10.75	-4.929	.000	1.69
Wrist abduction (N)	Peak	88.08 ± 43.10 121.63 ± 42.52	-2.056	.062	trivial
	Avg	70.49 ± 32.74 98.68 ± 32.84	-2.291	.041	0.85
Hin flexion (N)	Peak	139.86 ± 44.12 209.21 ± 41.19	-4.011	.002	1.62
	Avg	116.92 ± 39.27 169.77 ± 23.57	-4.384	.001	1.63

VOLUME 3 | ISSUE 1 | 2025 | 9

Llin extension (NI)	Peak	124.75 ± 32.81 239.23 ± 41.97	-7.260	.000	3.06
Hip extension (N)	Avg	99.39 ± 33.97 182.75 ± 36.00	-5.534	.000	2.38
Hin obduction (NI)	Peak	117.30 ± 28.33 169.44 ± 38.89	-4.601	.001	1.53
	Avg	95.06 ± 27.14 131.87 ± 29.90	-4.514	.001	1.28
Hin adduction (N)	Peak	100.67 ± 17.58 182.41 ± 48.88	-5.361	.000	2.22
	Avg	84.66 ± 17.27 143.31 ± 37.29	-4.932	.000	2.01
Knop flowion (NI)	Peak	130.57 ± 23.66 194.90 ± 48.33	-4.130	.001	1.69
	Avg	108.20 ± 22.09 157.54 ± 39.27	-3.515	.004	1.54
	Peak	165.08 ± 46.67 177.44 ± 51.74	-0.844	.415	trivial
	Avg	136.70 ± 34.16 135.68 ± 27.24	0.110	.914	trivial
Ankla darsi flavian (NI)	Peak	86.73 ± 21.18 123.15 ± 29.66	-4.204	.001	1.41
	Avg	71.97 ± 19.77 107.29 ± 27.24	-4.408	.001	1.48
Ankle planter flavion (N)	Peak	78.29 ± 20.79 123.41 ± 32.00	-4.203	.002	1.67
	Avg	60.32 ± 19.15 103.87 ± 25.76	-4.729	.000	1.91
Ankle inversion (NI)	Peak	79.88 ± 17.24 106.06 ± 18.48	-4.063	.002	1.46
Ankle Inversion (N)	Avg	65.97 ± 14.89 83.67 ± 17.80	-2.994	.011	1.07
Ankle eversion (N)	Peak	85.25 ± 8.81 100.08 ± 24.63	-2.184	.050	trivial
Ankle eversion (N)	Avg	70.63 ± 6.27 80.63 ± 16.80	-2.145	-2.145	trivial

Table 5. Power comparison of AUT to pre and post-test.

Power	Group	Pre – Post	t	р	ES
Situp	AUT	19.23 ± 2.24 – 21.53 ± 3.84	-2.540	.026	0.73
Sit-up	IKT	17.69 ± 3.11 – 23.69 ± 4.30	-7.899	.000	1.59
Push-up	AUT	22.15 ± 9.33 – 23.38 ± 7.76	-0.686	.506	trivial
	IKT	12.61 ± 5.72 – 21.15 ± 8.89	-3.517	.004	1.14
Tricono dino	AUT	22.61 ± 7.48 – 26.07 ± 5.10	-2.347	.037	0.54
	IKT	21.38 ± 5.31 – 28.30 ± 6.71	-5.105	.000	1.14
Countermourantiumen	AUT	24.11 ± 3.65 – 24.61 ± 3.59	-0.495	.629	trivial
Countermovement jump	IKT	21.80 ± 6.95 – 23.84 ± 5.91	-1.204	.252	trivial
Countermovement iump (00°)	AUT	27.15 ± 5.97 – 27.92 ± 6.10	-1.059	.310	trivial
	IKT	$22.53 \pm 3.09 - 24.57 \pm 5.96$	0.143	.889	trivial
Vertical jump	AUT	28.92 ± 4.59 – 29.23 ± 4.24	-0.362	.724	trivial
ventical jump	IKT	24.57 ± 5.96 – 24.38 ± 3.04	0.101	.921	trivial
Single log vorticel jump (right)	AUT	11.38 ± 3.81 – 12.30 ± 2.95	-1.369	.196	trivial
Single leg vertical jump (light)	IKT	9.69 ± 2.98 – 10.38 ± 1.75	-0.962	.355	trivial
Single log vorticel jump (left)	AUT	11.84 ± 3.26 – 12.69 ± 3.79	-1.058	.311	trivial
Single leg vertical jump (left)	IKT	8.00 ± 1.87 – 9.53 ± 1.80	-2.857	.014	0.83

© 2025 ARD Asociación Española.

Flexibility	AUT	24.23 ± 6.83 - 25.76 ± 6.62	-2.922	.013	0.22
	IKT	21.30 ± 6.47 – 24.76 ± 7.10	-3.212	.007	0.50
Handgrip (right)	AUT	28.38 ± 3.82 – 27.99 ± 3.60	0.368	.719	trivial
	IKT	$26.19 \pm 3.87 - 27.79 \pm 3.06$	-1.738	.108	trivial
Handarin (loff)	AUT	27.61 ± 3.11 – 28.24 ± 2.85	-0.885	.394	trivial
	IKT	25.71 ± 3.74 – 25.53 ± 3.56	0.147	.886	trivial
Acility	AUT	14.47 ± 0.88 – 14.28 ± 0.87	0.813	.432	0.21
Aginty	IKT	15.11 ± 0.85 – 14.56 ± 0.72	2.839	.015	0.69

Table 6. Power	outcomes com	parison of A	UT and IKT	to post test
			• . •	

Power	Group	Pre – Post	t	р	ES
Sit-up	AUT	21.53 ± 3.84 23 69 + 4 30	-1.345	.191	trivial
Push-up	AUT	23.38 ± 7.76 21.15 ± 8.89	0.681	.502	trivial
Triceps dips	AUT IKT	26.07 ± 5.10 28.30 ± 6.71	-0.954	.350	trivial
Countermovement jump	AUT IKT	24.61 ± 3.59 23.84 ± 5.91	0.401	.692	trivial
Countermovement jump (90°)	AUT IKT	27.92 ± 6.10 22.38 ± 3.79	2.778	.010	1.09
Vertical jump	AUT IKT	29.23 ± 4.24 24.38 ± 3.04	3.345	.003	1.31
Single leg vertical jump (right)	AUT IKT	12.30 ± 2.95 10.38 ± 1.75	2.017	.055	trivial
Single leg vertical jump (left)	AUT IKT	12.69 ± 3.79 9.53 ± 1.80	0.371	.714	trivial
Flexibility	AUT IKT	25.76 ± 6.62 24.76 ± 7.10	-1.880	.072	trivial
Handgrip (right)	AUT IKT	27.99 ± 3.60 27.79 ± 3.06	2.136	.043	0.05
Handgrip ((left)	AUT IKT	28.24 ± 2.85 25.53 ± 3.56	-0.907	.373	trivial
Agility	AUT IKT	14.47 ± 0.88 15.11 ± 0.85	0.152	.880	trivial

Power outcomes showed a high significant of power improvement in calisthenic, vertical jump, flexibility and hand strength measurements before and after auxotonic resistance training to AUT and IKT. According to AUT IKT, vertical jump performance showed a high effect size in the post-test comparison (Tables 5,6).

DISCUSSION

Auxotonic resistance training performed to evaluate on strength and power changes of young volleyball players over 8 weeklong term linear periodization. Performance research process of young volleyball players had included some maximal strength, isometric strength, calisthenic, power, flexibility and agility tests. The comparison of AUT and IKT after auxotonic resistance training reported 1RM strength was very large effect size according to AUT IKT. Auxotonic resistance training continued development of strength without changing mechanic range of motion during linear periodization, however, current research showed that mechanical range of motion limited by other measurements and insufficient maximal force production to subsequent strength development (Azeem et al., 2022). On the other hand, auxotonic resistance training develops muscle mechanic isometric contraction potential to maximal strength development, however, maximal strength not developed on mechanic range of motion by isometric time-dependent force. That is, the potential peak and

average force related isometric muscle contraction should be limited to 5-7 s for the lower compartment (Comfort et al., 2022). Furthermore, some evidence to combination isotonic + isometric contraction in 1RM bench press of isometric 14.23%, and isotonic 35.45% proper strength planning on compartment muscle limited range of motion, thus potential isometric peak and average muscle force must be constructed for strength increase based time-dependent trials after resistance exercise (Azeem et al., 2022; Comfort et al., 2022). Similarly, research outcomes observed that the use of isometric or isotonic exercise in incorrect planning resulted in similar strength outcomes especially for energy potential production of specific muscle group did not provide strength increases via auxotonic resistance training. In this condition, performance outcomes had relationship auxotonic resistance training outcomes for muscle contraction mechanics based on the combination of muscle strength increases with isometric muscle contraction, supporting the potential fast contraction force production of the muscle. Within isotonic muscle contractions in the joint range of motion that therefore, static and dynamic forces in AUT provide more meaningful results than IKT. Auxotonic resistance training was highly effective resistance training method during long term training periods including isometric muscle contraction periods. It was seen in one study that only the mechanical range region reported shoulder region muscle force was evaluated in isometric activation, but in our study, isometric contraction sessions supported the resistance training period in both the upper and lower compartment regional muscles (Karagiannapoulos et al., 2022). Therefore, increase of muscle strength are variable, regional compartment studies not used in different auxotonic exercises for sports performance athletes for peak and average effects of actual strength should be evaluated specifically for each athlete. Activforce isometric results AUT and IKT were compared and the reason why no significant outcomes were obtained is that similar age and strength characteristics are not the same for individual evaluations in isometric muscle contraction activations. The reason why power improves in auxotonic resistance training is that it includes high repetition time-dependent exercises (4). At the same time, more effective regional auxotonic training changed the performance values in these strength test parameters, especially strength.

CONCLUSION

This research determined the effect of auxotonic resistance training on muscle strength and power in young volleyball players. However, muscle strength tests and power performance were specific to athletes and different results were obtained compared to other studies using auxotonic resistance training. In the research, auxotonic resistance training was in isometric and isotonic combination and was examined in two separate groups for performance changes. Therefore, muscle strength gains had similar effects in both groups on 1RM measurements. Although the AUT and IKT were similar in the peak and average isometric values where muscle strength was examined regionally, a larger effect size was observed in the IKT. Likewise, after auxotonic resistance training, the calisthenic, flexibility and agility results of the AUT and IKT were similar. AUT achieved more significant results in jumping performance than the IKT group. Therefore, as a result of the research, planning auxotonic resistance training at a level that will increase isometric and isotonic performances, which is a combination of muscle contraction, improves muscle strength and power parameters individually in athletes. In the research, indeed auxotonic resistance training improves muscle strength 1RM performances and isometric muscle contraction potential when applied at any time during annual training periods. For this reason, our research shows that auxotonic resistance training should be implemented in young athletes during the periods when annual muscle strength and power training is planned. At the same time, there is a greater need for studies that will demonstrate high jumping performance when isometric muscle contraction combinations, which are easier and simpler than other strength training for muscle strength increases, are combined with technical training.

AUTHOR CONTRIBUTIONS

For this study showed any conflict of interest, funding preparation, no ethic statement. All rights hidden in ethic committee and Helsinki declarations. Authors; YK and FK have research design, methodological approach, and assay structure.

SUPPORTING AGENCIES

No funding agencies were reported by the authors.

DISCLOSURE STATEMENT

No potential conflict of interest was reported by the authors.

DATA AVAILABILITY

Data are available under reasonable request to corresponding author. Included both original data generated in the study research and supports of results and analyses.

REFERENCES

- Andrews, A. W., Thomas, M. W., & Bohannon, R. W. (1996). Normative values for isometric muscle force measurements obtained with hand-held dynamometers. Physical therapy, 76(3):248-259. <u>https://doi.org/10.1093/ptj/76.3.248</u>
- Azeem, Kaukab, and Erika Zemková. (2022). "Effects of isometric and isotonic training on health-related fitness components in young adults" Applied Sciences, 12(17):8682. <u>https://doi.org/10.3390/app12178682</u>
- Clemons J. (2019). Construct Validity of Two different methods of scoring and performing push-ups. Journal of Strength and Conditioning Research, 33(11):2971-2980. https://doi.org/10.1519/JSC.0000000002843
- Comfort, P., Jones, P. A., Thomas, C., Dos'Santos, T., McMahon, J. J., & Suchomel, T. J. (2022). Changes in early and maximal isometric force production in response to moderate- and high-load strength and power training. Journal of strength and conditioning research, 36(3):593-599. https://doi.org/10.1519/JSC.000000000003544

Delavier, F. (2001). Strength training anatomy. Human Kinetics.

- Guppy, S. N., Kotani, Y., Brady, C. J., Connolly, S., Comfort, P., & Haff, G. G. (2022). The Reliability and magnitude of time-dependent force-time characteristics during the isometric midthigh pull are affected by both testing protocol and analysis choices. Journal of strength and conditioning research, 36(5):1191-1199. <u>https://doi.org/10.1519/JSC.000000000004229</u>
- Kahraman, Y. (2023). Is there any weakness in sports performance in volleyball athletes regarding the correlation between foot posture index and lower limb functional hopping performance?. Journal of the Foot & Ankle, 17(1):8-15. <u>https://doi.org/10.30795/jfootankle.2023.v17.1678</u>
- Karagiannopoulos, C., Griech, S., & Leggin, B. (2022). Reliability and Validity of the ActivForce Digital Dynamometer in Assessing Shoulder Muscle Force across Different User Experience Levels. International journal of sports physical therapy, 17(4):669-676. <u>https://doi.org/10.26603/001c.35577</u>

- Lee, S. E. K., Lira, C. A. B., Nouailhetas, V. L. A., Vancini, R. L., & Andrade, M. S. (2018). Do isometric, isotonic and/or isokinetic strength trainings produce different strength outcomes?. Journal of bodywork and movement therapies, 22(2):430-437. <u>https://doi.org/10.1016/j.jbmt.2017.08.001</u>
- Lino-Samaniego, Á., de la Rubia, A., & Sillero-Quintana, M. (2022). Acute effect of auxotonic and isometric contraction evaluated by infrared thermography in handball players. Journal of thermal biology, 109,103318. <u>https://doi.org/10.1016/j.jtherbio.2022.103318</u>
- Lum, D., Joseph, R., Ong, K. Y., Tang, J. M., & Suchomel, T. J. (2023). Comparing the effects of long-term vs. periodic inclusion of isometric strength training on strength and dynamic performances. Journal of strength and conditioning research, 37(2):305-314. https://doi.org/10.1519/JSC.00000000004276
- Muyor, J. M., Vaquero-Cristóbal, R., Alacid, F., & López-Miñarro, P. A. (2014). Criterion-related validity of sitand-reach and toe-touch tests as a measure of hamstring extensibility in athletes. Journal of strength and conditioning research, 28(2):546-555. <u>https://doi.org/10.1519/JSC.0b013e31829b54fb</u>
- Rhea M. R. (2004). Determining the magnitude of treatment effects in strength training research through the use of the effect size. Journal of strength and conditioning research, 18(4):918-920. https://doi.org/10.1519/14403.1
- Vargas-Molina, S., Salgado-Ramírez, U., Chulvi-Medrano, I., Carbone, L., Maroto-Izquierdo, S., & Benítez-Porres, J. (2021). Comparison of post-activation performance enhancement (PAPE) after isometric and isotonic exercise on vertical jump performance. PloS one, 16:e0260866. <u>https://doi.org/10.1371/journal.pone.0260866</u>

This work is licensed under a <u>Attribution-NonCommercial-ShareAlike 4.0 International</u> (CC BY-NC-SA 4.0).